If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-12.5=0
a = 2; b = 10; c = -12.5;
Δ = b2-4ac
Δ = 102-4·2·(-12.5)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{2}}{2*2}=\frac{-10-10\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{2}}{2*2}=\frac{-10+10\sqrt{2}}{4} $
| 4(2k+7)=48 | | -3x^2-0x+36=0 | | -3x^2-6x+36=0 | | 3x^2-6x+36=0 | | X-3+2x+1=180 | | 2(y+6)=7y | | 28w^2-140w-175=0 | | 0,022=X^2/(2.1x10^-3-2x)^2 | | 7y+2=69 | | 2^x+3+2^x=72 | | a^-3=4,167*10^-3 | | a=1-2-3/5 | | 5^2x-3*5^x+2=0 | | 5^(2x)-3*5^x+2=0 | | 3(9+4x)=21 | | 0.01x=1.00 | | (2a-1)(a+1)=0 | | Y=6.5*x+790 | | 2y+5=37/2 | | 4(6-x)=9 | | 2y+6=3y+8 | | 24x^2+34x=64 | | 24x^2+34x=-64 | | 24xˇ2+34x=-64 | | 0,3/72=x | | 3/10/72=x | | x/(100+x)=0.05 | | x=5-0.05x | | 5(x+9)=10# | | 4x3-25x=0 | | -11-15x=22 | | x+x=x+70 |